Title: Empirical Distributional Semantics: Methods and Biomedical Applications 1.5 Rule-based Methods for Text Processing 2. Existing Applications of Distributional Semantics 2.4 Bilingual Information Extraction 2.7 Taxonomy Construction and Validation 3.1 Gene Clustering Using Medline Abstracts
نویسندگان
چکیده
Over the past fifteen years, a range of methods have been developed that are able to learn human-like estimates of the semantic relatedness between terms from the way in which these terms are distributed in a corpus of unannotated natural language text. These methods have also been evaluated in a number of applications in the cognitive science, computational linguistics and the information retrieval literatures. In this paper, we review the available methodologies for derivation of semantic relatedness from free text, as well as their evaluation in a variety of biomedical and other applications. Recent methodological developments, and their applicability to several existing applications are also discussed.
منابع مشابه
Enhancing clinical concept extraction with distributional semantics
Extracting concepts (such as drugs, symptoms, and diagnoses) from clinical narratives constitutes a basic enabling technology to unlock the knowledge within and support more advanced reasoning applications such as diagnosis explanation, disease progression modeling, and intelligent analysis of the effectiveness of treatment. The recent release of annotated training sets of de-identified clinica...
متن کاملDeclarative Semantics in Object-Oriented Software Development - A Taxonomy and Survey
One of the modern paradigms to develop an application is object oriented analysis and design. In this paradigm, there are several objects and each object plays some specific roles in applications. In an application, we must distinguish between procedural semantics and declarative semantics for their implementation in a specific programming language. For the procedural semantics, we can write a ...
متن کاملTaxonomy Extraction from Automotive Natural Language Requirements Using Unsupervised Learning
In this paper we present a novel approach to semi-automatically learn concept hierarchies from natural language requirements of the automotive industry. The approach is based on the distributional hypothesis and the special characteristics of domain-specific German compounds. We extract taxonomies by using clustering techniques in combination with general thesauri. Such a taxonomy can be used t...
متن کاملA New Semantic Theory of Natural Language
Formal Semantics and Distributional Semantics are two important semantic frameworks in Natural Language Processing (NLP). Cognitive Semantics belongs to the movement of Cognitive Linguistics, which is based on contemporary cognitive science. Each framework could deal with some meaning phenomena, but none of them fulfills all requirements proposed by applications. A unified semantic theory chara...
متن کاملExtracting Clinical Findings from Swedish Health Record Text
Information contained in the free text of health records is useful for the immediate care of patients as well as for medical knowledge creation. Advances in clinical language processing have made it possible to automatically extract this information, but most research has, until recently, been conducted on clinical text written in English. In this thesis, however, information extraction from Sw...
متن کامل